

C3 C4 S2 Survival Kit

Core 3

Pg2 Algebraic Fractions

Pg2 Natural Logs Pg3 Derivatives

Pg4 Trig Formulae & Rcos(x+a) for finding max/min

Pg5 Using recurrence relations to find approximate roots to f(x)=0

Range & Domain, Inverse, Composites Pg6

Pg7 Graph sketching

Modulus equations (solve using a graph) Pg8

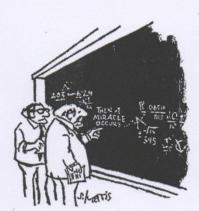
Core 4

Pq9 Implicit Differentiation

Pg9 Partial Fractions Pg10-14 Integration Pg 15 Trapezium Rule Pg16 Binomial Expansion Differential Equations Pg17

Pg17 Connected Rates of Change

Parametric Equations 1718


Vectors Pg19

Statistics 2

Pg21 Accuracy

Pg22 Binomial Distribution Pg23 Poisson Distribution Pg24 Approximation Triangle Pg25 Continuous Random Variables Continuous Distribution Pg26

Hypothesis Testing Pg27

"I think you should be more explicit here in step two."

Name

Algebraic Fractions

Typical expensive errors include:

- Expanding brackets wrongly e.g. $5 3(x + y) \neq 5 3x + 3y$
- Massively overcomplicating the algebra alondspile.
- · Letting a minus sign defeat you
- Using brackets incorrectly
- Cancelling things illegally by just crossing them out $\frac{x^2+y}{p^2+y}\neq \frac{x^2}{p^2}$

Natural Logs

e = 2.718... $log_e x = log_e log_e = 1$ $log_e x = log$

 $\ln ab = \ln a + \ln b$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

 $\ln x^n = 0$

 $\ln 3t \neq \ln 3t$

Derivatives to learn

Function	Derivative	Function	Derivative
sin x	EOS X	sec x	eccton
cos X	-57436	cosec X	- cosecucota
tan ×	SEC ² SC	cot x	-000000
e ^x	ex	ln ×	2
X ⁿ	nxn-1	a ^x (C4 only)	a^{∞} ina
Chain Rule f[g(x)]		Quotient Rule	
dic (f [g(x)]) =		$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{1}{2}$	
f [3(x)] g'(x)		f'(00)g(00) - f(00)g'(00)	
Product Rule		(g(sc)) ²	
d (f (>) g (>)) = f(0) g (>) + f(>) g'(x)		$\frac{dy}{d\alpha} = \frac{1}{\frac{d\alpha}{dy}}$	
		/	

SCAN FOR YOUTUBE VIDEOS

Chain Rule

Product Rule

Quotient Rule

Oooo lovely: Trig Formulae

$$\cos^2 A + \sin^2 A = \sqrt{1 + \cot^2 A} = \cos^2 A + \sin^2 A = \sec^2 A$$

tanc = Sinx

$$tan 2A = \frac{2 tan A}{1 - tan^2 A}$$

$$\sin^2 A = \frac{1}{2} - \frac{1}{2} \cos 2A$$

$$\sin^2 A = \frac{1}{2} - \frac{1}{2}\cos 2A$$
 $\cos^2 A = \frac{1}{2} + \frac{1}{2}\cos 2A$

$$sinx + 2cosx = Rsin(x+a)$$

=
$$\sqrt{5}\left(\frac{1}{\sqrt{5}}\sin x + \frac{2}{\sqrt{5}}\cos x\right) = R\sin(x+\alpha)$$

=
$$\sqrt{5}(\sin x \cos x + \cos x \sin x) = R \sin(x + \infty)$$

$$= \sqrt{5} \sin(x + 63.4) = R \sin(x + \alpha)$$

$$\cos x = t_{\overline{a}}$$

$$\sin x = \frac{2}{3}$$

$$\sin x = \frac{2}{3}$$

For Rsin(x+a) the maximum,
$$R$$
., is achieved when x+a= $\frac{90,450}{100}$. For Rcos(x+a) the maximum, R ., is achieved when x+a= $\frac{90,360}{100}$.

Using recurrence relations to find approximate roots

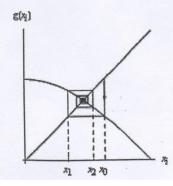
f(x) = ... is continuous and changes sign between x = a and x = b, therefore f(x) has a root between x = a and x = b. This proves that the root is x = ... to 2* dp

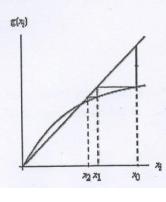
 x^2 - 5x = 3 has a root in the interval 5 < x < 6. Show that the root of this equation also solves the equation x = $\sqrt{5x+3}$

$$3c^{2}-5x=3$$

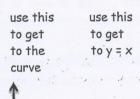
$$3c^{2}=5>c+3$$

$$3c=\sqrt{5>c+3}$$


Take $x_0 = 5$ and use iteration to find 4 improved approximations to the root of the equation $x^2 - 5x = 3$ $\Rightarrow c_0 = 5$ $\Rightarrow c_1 = \sqrt{53c_0 + 3} = \sqrt{28} = 5.292$


$$3C_1 = \sqrt{506+3} = \sqrt{28-5.292}$$

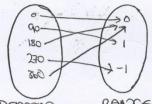
 $3C_2 = \sqrt{500+3} = \sqrt{29.4515} = 5.427$
 $2C_3 = \sqrt{5002+3} = \sqrt{30.1274} = 5.490$
 $3C_4 = \sqrt{5002+3} = \sqrt{30.4488} = 5.518$


Prove that the root is 5.5 to 1 d.p.

Let
$$f(s,ss) = 0.0525$$

 $f(s,ss) = 0.0525$

Because there is a charge of sign and because floy is whinever, a root of the equation is 5.5



Range & Domain, Inverse, Composites

Domain and Range

f(x) = anix

Danaun is the starting

Range is the ending

Damaio

this is an example of a many-one purchan.

Inverse

$$f(x) = 5x - 2$$

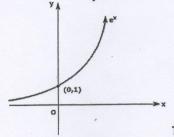
$$f(x) = x + 2$$

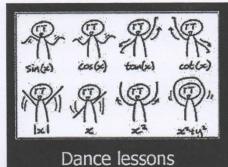
$$\frac{1}{5}$$

going from the range numbers to the domain numbers

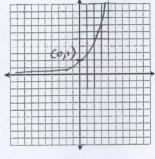
Composite

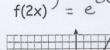
$$f(x) = x^2 \qquad fg(x) = do g \text{ fish } = (2x+3)^2$$

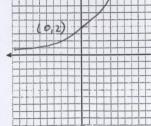

$$g(x) = 2x+3 \qquad gf(x) = do f \text{ fish } = 2x^2+3$$

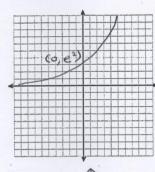


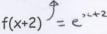
Forchion

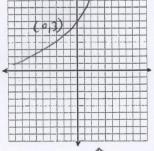

A farction is a mapping sich that every element of the domain is mapped to exocity one element of the range.

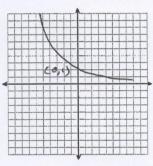

Graph sketching is fun (yes it is)

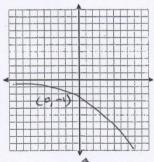


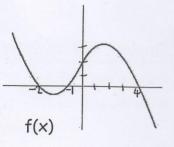


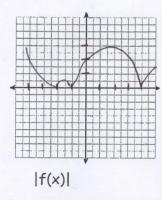

$$f(x) = e^x$$

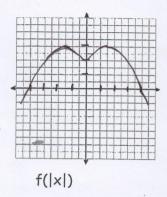


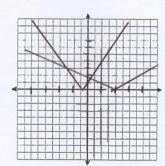




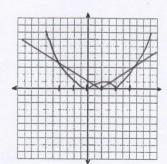



 $2f(x) = 2e^{x}$ $f(x) + 2 = e^{x} + 2$ Remember to show the x-intercept: and the y-intercept:


Now you can apply combinations of these transformations to $\textbf{e}^{\textbf{x}}$ and lnxAlways label the equation of the asymptotel



Modulus Equations need to be solved using a <u>graph</u> so you know which equations to put together!



$$|3x + 1| = |x - 2|$$

Exaggerate the steepness of the steeper line to make sure you get all the intercepts

$$|x(x-2)| = |x-1|$$